Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems
نویسنده
چکیده
This paper studies the pressureless Euler-Poisson system and its fully non-linear counterpart, the Euler-Monge-Ampère system, where the fully non-linear Monge-Ampère equation substitutes for the linear Poisson equation. While the first is a model of plasma physics, the second is derived as a geometric approximation to the Euler incompressible equations. Using energy estimates, convergence of both systems to the Euler incompressible equations is proved.
منابع مشابه
. A P ] 7 A pr 2 00 5 Quasi - neutral limit of the Euler - Poisson and Euler - Monge - Amp è re systems
This paper studies the pressureless Euler-Poisson system and its fully non-linear counterpart , the Euler-Monge-Ampère system, where the fully non-linear Monge-Ampère equation substitutes for the linear Poisson equation. While the first is a model of plasma physics, the second is derived as a geometric approximation to the Euler incompressible equations. Using energy estimates, convergence of b...
متن کاملA geometric approximation to the Euler equations : the Vlasov-Monge-Ampère system
This paper studies the Vlasov-Monge-Ampère system (VMA), a fully non-linear version of the Vlasov-Poisson system (V P ) where the (real) Monge-Ampère equation det ∂ Ψ ∂xi∂xj = ρ substitutes for the usual Poisson equation. This system can be derived as a geometric approximation of the Euler equations of incompressible fluid mechanics in the spirit of Arnold and Ebin. Global existence of weak sol...
متن کاملConvergence of compressible Euler–Poisson equations to incompressible type Euler equations
In this paper, we study the convergence of time-dependent Euler–Poisson equations to incompressible type Euler equations via the quasi-neutral limit. The local existence of smooth solutions to the limit equations is proved by an iterative scheme. The method of asymptotic expansion and the symmetric hyperbolic property of the systems are used to justify the convergence of the limit.
متن کاملAn asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit
This paper deals with the modeling of a plasma in the quasi-neutral limit using the two-fluid Euler-Poisson system. In this limit, explicit numerical schemes suffer from severe numerical constraints related to the small Debye length and large plasma frequency. Here, we propose an implicit scheme which reduces to a scheme for the quasi-neutral Euler model in the quasi-neutral limit. Such a prope...
متن کاملNumerical Approximation of the Euler-Poisson-Boltzmann Model in the Quasineutral Limit
This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB) model of plasma physics. This model consists of the pressureless gas dynamics equations coupled with the Poisson equation and where the Boltzmann relation relates the potential to the electron density. If the quasi-neutral assumption is made, the Poisson equation is replaced by the constraint of zero local charge and the ...
متن کامل